Biography:
Ning Sun received the B.S. degree in measurement & control technology and instruments from Wuhan University, Wuhan, China, in 2009, and the Ph.D. degree in control theory and control engineering from Nankai University, Tianjin, China, in 2014. He is currently an IEEE Senior Member.
He is currently a Professor with the Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, China, where he is in charge of the Underactuated Robots Lab (URL). He was awarded the prestigious Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for Research in Japan (Standard). His research interests include intelligent control for mechatronic/robotic systems with emphasis on (industrial) applications.
Dr. Sun received the Wu Wenjun Artificial Intelligence Excellent Youth Award in 2019, the China 10 Scientific and Technological Developments in Intelligent Manufacturing (2nd achiever) in 2019, the First Class Prize of Wu Wenjun Artificial Intelligence Natural Science Award in 2017, the First Class Prize of Tianjin Natural Science Award in 2018, the Golden Patent Award of Tianjin in 2017, the IJCAS (International Journal of Control, Automation, and Systems) Academic Activity Award in 2018 and 2019, the Outstanding Ph.D. Dissertation Award from the Chinese Association of Automation (CAA) in 2016, etc. He also received several outstanding/best paper awards from journal/conferences.
He serves as an Associate Editor (editorial board member) for several journals, including Frontiers in Neurorobotics, International Journal of Control, Automation, and Systems, IET Cyber-Systems & Robotics, Transactions of the Institute of Measurement and Control, International Journal of Precision Engineering and Manufacturing, etc. Dr. Sun has been an Associate Editor of the IEEE Control Systems Society (CSS) Conference Editorial Board (including ACC, IEEE CDC) since July 2019, and he is/was an Associate Editor for IEEE ICRA and IEEE/RSJ IROS.
Brief introduction of your research experience:
Ning Sun received the B.S. degree in measurement & control technology and instruments from Wuhan University, Wuhan, China, in 2009, and the Ph.D. degree in control theory and control engineering from Nankai University, Tianjin, China, in 2014. He is currently an IEEE Senior Member.
He is currently a Professor with the Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, China, where he is in charge of the Underactuated Robots Lab (URL). He was awarded the prestigious Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for Research in Japan (Standard). His research interests include intelligent control for mechatronic/robotic systems with emphasis on (industrial) applications.
Dr. Sun received the Wu Wenjun Artificial Intelligence Excellent Youth Award in 2019, the China 10 Scientific and Technological Developments in Intelligent Manufacturing (2nd achiever) in 2019, the First Class Prize of Wu Wenjun Artificial Intelligence Natural Science Award in 2017, the First Class Prize of Tianjin Natural Science Award in 2018, the Golden Patent Award of Tianjin in 2017, the IJCAS (International Journal of Control, Automation, and Systems) Academic Activity Award in 2018 and 2019, the Outstanding Ph.D. Dissertation Award from the Chinese Association of Automation (CAA) in 2016, etc. He also received several outstanding/best paper awards from journal/conferences.
He serves as an Associate Editor (editorial board member) for several journals, including Frontiers in Neurorobotics, International Journal of Control, Automation, and Systems, IET Cyber-Systems & Robotics, Transactions of the Institute of Measurement and Control, International Journal of Precision Engineering and Manufacturing, etc. Dr. Sun has been an Associate Editor of the IEEE Control Systems Society (CSS) Conference Editorial Board (including ACC, IEEE CDC) since July 2019, and he is/was an Associate Editor for IEEE ICRA and IEEE/RSJ IROS.
Speech title: Modeling and Control of Underactuated Crane Systems With Experimental Verification
Abstract:
As heavy industrial engineering machines, cranes have been playing very important roles in various fields, such as logistics, construction, metallurgy, and manufacturing, among others. The major task for cranes is to transport cargos from their initial positions to desired locations rapidly and accurately, with negligible swing. At present, most cranes used in practice are manipulated by human operators, which exhibits such drawbacks as low efficiency, poor anti-swing performance, incorrect operations, and high risks. Therefore, the problem of anti-swing positioning control for cranes important both theoretically and practically.
Cranes are typically underactuated systems, i.e., they have fewer control inputs than their degrees of freedom (DoFs), making their control problem challenging. In this presentation, I will first share some of our recent results on dynamics analysis, motion planning, and intelligent control of different crane systems, including overhead cranes, rotary cranes, tower cranes, ship-mounted cranes, etc., with hardware experiments and applications. Then, some of our extended and related researches on robotic systems with similar dynamic characteristics will also be discussed briefly, including self-balance robots, pneumatic artificial muscle (PAM)-actuated robots, metal ingot polishing-oriented industrial robots, and so on.